5. Apply the Extreme Value Theorem to find the absolute extrema of $f(x) = 7 + 12x - 3x^2$ on the closed interval [-1, 3]

SAP

6. Apply the Mean Value Theorem to find f'(c) = slope of the secant line passing through endpoints on the closed interval [1,3] for the function $f(x) = x^4 - 8x$

see all

7. Given the function $f(x) = (9/x^3)$; use the first derivative test to determine intervals where the function is increasing, decreasing, and any extrema points.

See daly

8. Given the function $f(x) = (x^2 - 1)^2$; use the second derivative test to determine the intervals of concavity and the x-value of any Points Of Inflection (POI). Include the derivatives, critical values, and test regions as part of your response.

Find the derivative 8/ 4 of the following quarter will also bed the stangent line to the curve at the post of the stangent line to the stangent line to

P.3

caro (Chy

- 9. A street vendor in New York City sells hot dogs for \$3.00 each. Therefore, his revenue function is R(x) = 3x. His fixed cost for maintaining his stand each day is \$50.00 and his variable cost, or the materials needed to make the hot dogs, is \$2.00 per hot dog sold. Therefore, his daily cost function is C(x) = 50 + 2x.
 - a. Determine the formula for profit P(x)
 - b. Determine the marginal profit function P'(x)
 - c. What does your answer for P'(x) mean?

Sealdy

10. A 10-foot ladder is leaned up against a building. The ladder begins to slide away from the building at a rate of 2 ft/sec. Calculate the rate of decent of the top of the ladder when the base of the ladder is 6 feet from the building: (Note: use the Pythagorean Theorem as your base function)

selds

Caro (Chy O flx= Jx2+4X = 1 (x(x+4))= - of [x(x+4)] = d(x).(x+4)+xx(x+4) = 1(4+1) +X(G(X)+g(4)) 2 JX(X+1) x(1+0) tx tx 25x(x++) = 3×+4 2 [x(x+4) 1+2 JX(X+4)

$$\frac{2}{2} \frac{(++x)^{2} = [(x-1)/(2x+3)]^{3}}{(2x+3)^{3}}$$

$$= \frac{(x-1)^{3}}{(2x+3)^{3}}$$

$$= \frac{3(x-1)^{2} - \frac{6(x-1)^{2}}{2(x+3)^{4}}$$

$$= \frac{(x-1)^{3}}{(2x+3)^{4}}$$

$$= \frac{(x-1)^{3}}{(2x+3)^{4}}$$

on(1)3) Caro Carola 6) F(B)=XM-8X f(x54x3-8 tr3) - t 51-(-1) FW=32 32=40=8 $4c^{3} = 40$ 3 C 7 0 D

00°C1)3> Cho Chord 6) F(B)=XM-8X f(x54x3-8 t(3) - t 302+8=51-(-) FW=32 32=40=8 $4c^3 = 40$ 3 C 7 0 D

$$\begin{aligned}
&(1) & f(x) = \frac{9}{x^3} \\
&= \frac{1}{4} \left[\frac{1}{x^3} \right] \\
&= \frac{1}{4} \left[$$

Caro (Chay

8) 4(K_5-1)), b.10 1st deriat $=2(x^2-1)\cdot dx(x^2-1)$ = 2CX3+) CX (X3+ 4x(-1)) =2 (x3-1) (2x+0) =(4x(x2-1))- 1st derinter 200 = (dx) (4x(x2-1)) = 4. d (x(x2-1)] = 4(dx(x).(x2-p)+x.dx(x2-11) =4(1(x2-1)+x(\$(x3)+q(-1))) = 4(x2+x(2x+0)-1) $=4(3x^2+1)$ =8x2+4(x2-1) = (5×3-4)

b P(X)= dt = 1

dx Profit ewned by the verdar ouhen one additional hotdog 15 sold

$$\frac{2}{2} + \frac{1}{2} = 100$$

$$= 2 \times \frac{1}{2} \times \frac{1}{2} = 0$$

$$= -2 \times \frac{1}{2} \times \frac$$